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Abstract
We present extensive Monte Carlo simulations of the Ising film confined in an
L × M geometry (L � M) in the presence of long-range competing magnetic
fields h(n) = h1/n3(n = 1, 2, . . . , L) which are applied at opposite walls along
the M-direction. Due to the fields, an interface between domains of different
orientations that runs parallel to the walls forms and can be located close to
one of the two surfaces or fluctuate in the centre of the film (localization–
delocalization transition). This transition is the precursor of the wetting phase
transition that occurs in the limit of infinite film thickness (L → ∞) at the
critical curve Tw(h1). For T < Tw(h1) (T � Tw(h1)) such an interface is
bound to (unbound from) the walls.

We study this transition by measuring the magnetization profiles across
the sample and the distribution function of both the magnetization of the whole
sample and that of the centre of the film as a function of temperature, T , or
strength of the wall field, h1. We obtain estimates of the size-dependent wetting
‘critical’ points that allow us to extrapolate to the thermodynamic limit. Using
the results of these extrapolations, confirmed by independent measurements
of the cumulant, we draw the phase diagram of the wetting transition with
long-range surface fields.

We show that, starting from a localized interface well inside the non-wet
phase, the position of the interface diverges exponentially when approaching
the transition point, in contrast to the power-law divergence observed in the
case of short-range fields.

The properties of the delocalized interface are also studied. Within the
wet phase the width of the capillary waves broadens the observed interface
profiles. The spectrum of capillary waves is cut off at large wavelengths by
the correlation length, ξ‖, which scales like ξ‖ ∼ L2, similar to the short-range
case. Additionally, the interface stiffness is obtained from the Fourier spectrum
of the capillary waves.
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1. Introduction

Let us consider a confined system below its bulk critical temperature (Tc,b) where several phases
can coexist. The interaction with the confining walls may favour a phase different from the
phase prevailing in the bulk, and this fact may lead to the growth of a wetting layer at the walls,
separated by an interface from the bulk phase [1–6]. The study of wetting phenomena of solid
surfaces by a fluid has attracted much attention not only for the interesting phase behaviour
with several types of phase transition [7–32], but also because it is of primary importance
for many technological applications (lubrication, efficiency of detergents, oil recovery in
porous materials, stability of paint coatings, interaction of macromolecules with interfaces,
etc [1, 35–37]).

Wetting transitions are also observed when a magnetic material is in contact with a wall
where a surface magnetic field acts. For example, let us consider an Ising ferromagnet [38, 39]
with positive magnetization in the bulk and in the absence of any bulk magnetic field. Here,
a negative boundary field h1 acting at the wall at a certain temperature T may stabilize a
domain of negative magnetization at the surface, separated from the bulk by an interface. In
the non-wet state of the wall the thickness of the wetting layer is microscopically small (of the
order of few lattice spacings) and the interface is said to be bound to the wall. However, by a
suitable change of the control parameters, such as T and h1, the system may undergo a wetting
transition, where the thickness of the wetting layer diverges. Of course, if the system is confined
between two walls which are placed L lattice spaces apart, such a divergence becomes rounded
off. However, the interface is no longer bound to any wall and becomes delocalized. This
localization–delocalization transition is the precursor of a true wetting transition that occurs
in the semi-infinite system [40]. It is worth mentioning that a large number of studies of the
confined Ising magnet have been reported in the literature;see e.g. [9–11, 13, 16, 17, 40, 42–51].

The aim of this paper is to present and discuss extensive Monte Carlo simulations of
the critical wetting for the confined two-dimensional Ising model in the L × M geometry,
considering long-range magnetic fields acting at the walls which run along the M-direction.
Most of the available studies on wetting transitions in the Ising magnet are restricted to
short-range fields, stimulated by the existence of exact results, at least in some limiting
cases [53, 40, 67–69]. However, it is known [53, 2, 3, 66] that long-range surface forces modify
the wetting behaviour significantly, and in fact for many physical applications the choice of
long-range forces would be more realistic [9, 10, 59] than their short-range counterparts.

Such long-range boundary fields can be described by a power-law decay of the field with
the distance n to the wall, h(n) = h1 n−p, where p is a suitable exponent. We consider
only the case p = 3 here, since this choice is the physically most relevant case for fluids
interacting with an attractive wall (remember that the Ising magnet can be considered, in the
framework of the lattice gas interpretation, as a lattice model of the gas–liquid transition).
Integrating over all the van der Waals interactions between a (semi-infinite) wall and a fluid
atom, e.g. integrating the attractive part of a Lennard-Jones potential (decaying with distance
r as r−6) over all atoms of the wall, one obtains an n−3 interaction. Also from a theoretical
point of view in d = 2 dimensions the case p = 3 is most interesting [62] (remember that
in an effective interface Hamiltonian description h(n) translates into an interface potential
V (�) ∼ l−δ with δ = p − 1, � being the distance of the interface from the wall [1–5]).
It turns out that p = 3(δ = 2) is a borderline case: for p > 3 the entropic repulsion of
the interface dominates V (�) ∼ kBT �−2 [65], and the wetting behaviour is asymptotically
the same as in the case of short-range surface fields; however, for p < 3 one would obtain
exponents at complete wetting that depend on p [62]. For the case p = 3 and critical wetting,
however, an exponential divergence of the correlation lengths describing interfacial fluctuations
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approaching the wetting transition has been predicted [62], which does not occur for other
values of p.

In a previous numerical work [31] we have addressed the question of the influence of
long-range boundary fields on the wetting behaviour of the Ising magnet. These studies aimed
at understanding the behaviour of both the magnetization profiles across the film and the
correlation function [31] along the film. For these purposes it was not necessary to attempt
to accurately locate the critical points along the wetting curve, which is not known exactly
yet, in contrast to its short-range counterpart [40]. In fact, as already remarked [31], due to
computational limitations we were unable to perform reliable extrapolations of the finite-size
estimates for the critical points to the thermodynamic limit. This shortcoming is overcome in
this paper, where we increase the statistics by more than one order of magnitude. In this way,
extrapolating to the thermodynamic limit, we have located four points of the wetting phase
transition line, that, in addition to two points known trivially, provide a reliable overview of the
phase diagram. By means of a suitable location of the interface position along the strip,we have
access to the probability distribution of these local fluctuations. From this function we obtain,
in turn, the mean position, the width and the correlation length of the interface. These quantities
are then compared to estimates extracted from the analysis of the magnetization profiles and
the spin–spin correlations. The results obtained by these independent methods are found to
be in good qualitative agreement, and provide evidence for the exponential divergence of the
relevant length scales upon approaching the critical point. The influence of a bulk magnetic
field on the critical behaviour of the system is also addressed. We find a power law divergence
in the limit of a vanishing field within the wet phase (complete wetting). Furthermore, a
detailed study of the properties of the delocalized interface and its dependence on the film
thickness is presented. Using capillary wave theory we evaluate the interfacial stiffness. The
comparison with results previously obtained for the case of short-range fields allows us to
identify the influence of the long-range nature of the fields on the wetting behaviour of the
confined system.

The paper is organized as follows: after a short description of the theoretical background
(section 2), techniques and results are then presented and discussed in section 3, while the
conclusions are summarized in section 4.

2. Theoretical background

2.1. The confined Ising ferromagnet magnet with long-range boundary fields

We consider an Ising ferromagnet on the square lattice with a Hamiltonian given by

H = −J
∑

〈i, j〉
Si S j − h

∑

i

Si −
∑

n

h(n)
∑

iεn

Si , (1)

where J is the nearest-neighbour coupling, the sum 〈i, j〉 is extended once over all nearest
neighbour bonds, and h is a (bulk) uniform field that acts on all spins and is measured in units
of J .

We have used a L × M geometry with periodic boundary conditions in the x-direction
(where the system has the linear dimension M), and free boundary conditions in the z-direction,
where we label successive layers by the index n, and apply competing, long-range surface fields
h(n) at the free boundaries [9–11]

h(n) ≡ h1[n−3 − (L − n + 1)−3] n = 1, . . . , L (2)

where h1 is the magnitude of the surface magnetic field that is measured in units of the coupling
constant J .
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The Ising magnet in two dimensions and in the absence of any external magnetic field
undergoes a second-order order–disorder transition when the temperature is raised from
a relatively low initial value. The critical temperature of this model is known exactly,
kBTc,b/J = 2/ ln(1 +

√
2) = 2.269 . . . [39, 52]. In the following, temperatures are reported in

units of Tc,b. On the other hand, in the presence of competing surface fields the formation of an
interface between magnetic domains of opposite directions running along the film is observed.
In this confined geometry, such an interface undergoes a localization–delocalization transition
(as the temperature is raised keeping h1 constant). This behaviour of the interface is the
precursor of the wetting phase transition that occurs in the thermodynamic limit. We note
that for the case of short-range surface fields the wetting critical curve has been calculated
exactly [40], yielding

exp(2J/kBT ) · [cosh(2J/kBT ) − cosh(2h1c/kBT )] = sinh(2J/kBT ), (3)

where kB is the Boltzmann constant and h1c(T ) is the critical surface field (the inverse function
of the wetting temperature Tw(h1)). However, for long-range fields the phase diagram is not
known exactly yet, except for two extremal points, namely for T = 0h1 = [

∑∞
n=1 n−3]−1 [31],

while for T = 1h1 = 0.
The field given by equation (2) is equivalent, in the thermodynamic limit, to an effective

interface potential of the type [62, 63]

V (�) ∼ h� − B

�2
, (4)

where � is the distance of the interface to the wall, h is the bulk field, and B ∼ h1 denotes the
strength of the surface field. In the framework of the theory of wetting, this kind of potential
is marginal between the strong and the weak fluctuation regimes [64]. Also, this effective
potential is of the order of the effective entropic repulsion in d = 2 dimensions [65, 66]

Vfl ∼ kBT �−2. (5)

Therefore, when approaching the wetting transition and in the thermodynamic limit L → ∞,
the relevant length scales diverge according to [63]

ξ‖ ∼ ξ2
⊥ ∼ 〈�〉2 ∼ ξ0 exp(b(Tw − T )−1/2), (6)

ξ⊥ and ξ‖ being the correlation lengths perpendicular and parallel to the film walls, respectively.
The divergence given by equation (6) resembles the Kosterlitz–Thouless transition [60], where
the enthalpy of the vortex–antivortex pair at a distance � scales as J ln �, and the entropy scales
as T ln �. In fact, in the present case, the enthalpy of the interface at a distance � from the wall
scales as −h1�

−2 and the entropy scales as T �−2, so that the energy and the entropy of the
relevant degree of freedom scale in the same way with the length [31].

In the presence of a bulk magnetic field h, and at a fixed temperature T > Tw(h1), the
divergence of these lengths upon approaching bulk coexistence, h = 0, obeys power laws with
universal exponents [57]

〈�〉 ∼ ξ⊥ ∼ ξ
1/2
‖ ∼ h−1/3. (7)

This means that βco = νco
⊥ = 1/3, νco

‖ = 2/3, and the index co stands for ‘complete wetting’.
In view of these results, let us now briefly review the scaling theory for critical wetting

with long-range fields as given by equation (2) [11, 31]. The singular part of the surface free
energy for a film of thickness L and length M can be written as

fs = ξ−1
‖ F̃s(Lξ

−1/2
‖ , Mξ−1

‖ , hξ
3/2
‖ ) (8)

where F̃(X, Y, Z) is a scaling function. Despite the fact that equation (6) formally implies
ν‖ = ∞ and ν‖/ν⊥ = 2, we make use of the scaling argument that M scales with ξ‖ and L scales
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with ξ⊥ to motivate equation (8). Now in order to locate the localization–delocalization
transition of the interface in a film with constant M/L2, we take X = 1 (for Z = 0) in
equation (8). Defining t ≡ (Tw − T )/Tw as the scaled temperature variable, one finds

X = Lξ
−1/2
‖ = 1, ξ c

‖ = L2, (9)

and obtains

tc(L) ∼ (ln L)−2, Tc,L − Tw ∼ (ln L)−2. (10)

Equation (10) can be utilized to extrapolate the finite size estimate of the wetting critical
temperature extracted from the Monte Carlo simulations to the thermodynamic limit. It should
be noted that now Tc,L is more strongly depressed from Tw with decreasing L than in the case
of short-range fields, where Tc,L − Tw ∝ L−1.

Then we proceed to discuss the scaling properties for some of the thermodynamic functions
that can be derived from equation (8). The surface excess magnetization is given by

ms ≡
(

∂ fs

∂h

)

T,h1

= ξ
1/2
‖ m̃s(Lξ

−1/2
‖ , Mξ−1

‖ , hξ
3/2
‖ ) (11)

where m̃s is another scaling function. One can recognize from this equation that ms ∼ ξ⊥.
Hence this quantity will be applied in our calculations as an independent measure of the
perpendicular correlation length of the film. We have for t = 0 in the limit L → ∞ (but
M/L2 = constant)

ms ∼ h−1/3m̂s(M/L2), (12)

in agreement with equation (7). The surface susceptibility becomes

χs ≡
(

∂ms

∂h

)

T,h1

= ξ2
‖ χ̃s(Lξ

−1/2
‖ , Mξ−1

‖ , hξ
3/2
‖ ) (13)

where χ̃s is another scaling function. The total susceptibility of the system can be split into
bulk and surface contributions as

χ = χb +
1

L
χs ≈ 1

L
χs, t → 0 (14)

where the last approximation results from the fact that χb exhibits a non-singular behaviour
in the vicinity of the wetting transition. Taking in equation (13) the limit h = 0 and keeping
M/L2 fixed, a finite maximal value of χ must be reached for a constant value of the scaling
variable t ∼ 1/(ln L)2, because χ cannot be divergent for a system which is finite in all its
extensions. This maximal value is given by

χmax ∼ ξ2
‖
L

∼ L3, (15)

where we have used the relationship ξ‖ ∼ L2, from equation (9). This equation in turn implies
that the fluctuation of the bulk magnetization at t = 0 is of order unity, cf equation (27) below.

On the other hand, the confined interface can also be treated in terms of the capillary wave
Hamiltonian given by

H[�] =
∫ M

0
dx

{
	

2

[
d�(x)

dx

]2

+ V [�(x)]

}
, (16)

where 	/kBT is the interfacial stiffness and V (�) is an effective potential acting on the
interface position due to the confining walls. Within a mean-field framework, it is expected
that �(x) would weakly fluctuate so that V (�) can be expanded around the mean position
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�̄ = L/2 [16, 54]. Using this approximation, neglecting constant terms and defining
u(x) ≡ �(x) − L/2, one obtains

H[u] =
∫ M

0
dx

{
	

2

[
du(x)

dx

]2

+
1

2

(
∂2V

∂�2

)

u=0

u2

}
. (17)

Taking the Fourier components of the local interface position u(x) and using the equipartition
theorem, one obtains for the mean square value of the component u(q) [4, 3]

〈|u(q)|2〉−1 = β	(q2 + ξ−2
‖ ) (18)

where the parallel correlation length for interfacial fluctuations is given by

ξ−2
‖ = 1

	

(
∂2V (�)

∂�2

)

u=0
. (19)

In order to obtain a reliable estimation of the dependence of ξ‖ on L one has to consider
that the fluctuations of the interface create, at a distance � from the wall, an effective entropic
repulsive potential given by equation (5) [65, 66]. Then, replacing equation (5) in the mean
field equation (19), one obtains

ξ‖ ∼ L2. (20)

This result is also in agreement with the predictions of the transfer matrix method given, for
short-range wall potentials, by

ξ‖ = 2β	

3π2
L2, (21)

and with scaling arguments [16]. For the sake of completeness, let us also recall that for the
case of short-range wall potentials the same result (equation (21)) can be obtained by means
of the solid-on-solid (SOS) approach applied to Ising films [51, 53].

Furthermore, replacing the obtained relationship for ξ‖ in the expression of the Fourier
spectra (equation (18)), it is possible to evaluate the mean square displacement of the interface
for a finite value of M as follows:

s2 ≡ 〈u2(x)〉 =
∑

q

〈|u(q)|2〉 = M

2π

∫ 2π/a

2π/M
dq〈|u(q)|2〉 (22)

where a is a short-wavelength cut-off (usually of the order of the lattice spacing). Now using
equation (18), one gets

s2 = ξ‖
2π	

[
tan−1

(
2πξ‖

a

)
− tan−1

(
2πξ‖

M

)]
. (23)

Since we are interested in the limit ξ‖  a it is possible to use the approximation
tan−1(2πξ‖/a) ≈ π/2. Also, for ξ‖ � M one can use tan−1(x) ≈ x in the second term,
so one has

s2 ≈ ξ‖
4	

(
1 − 4

ξ‖
M

)
, ξ‖ � M. (24)

Now, combining equations (20) and (24), it follows that

s2 ∼ L2, (25)

and the width of the interfacial profile is of the same order as the thickness of the strip.
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Figure 1. Set of typical plots describing the interface localization–delocalization transition in an
Ising film of size L = 32 and M = 256, where long-range surface magnetic fields are applied. Data
correspond to T = 0.8 and two different values of h1, as listed in the figures. (a) Magnetization
profiles m(z). (b) Distribution function of the total magnetization m. (c) Distribution function of
the magnetization at the centre of the film, m0.

3. Results and discussion

3.1. Brief details on the Monte Carlo simulation method

Simulations are performed using lattices of width L = 12, 16, 24, 32, and 48, and taking
M = L2/4 = 36, 64, 144, 256, and 576, respectively. The standard Metropolis algorithm is
used in all simulations. Typical runs are performed with 106–4 × 106 MCSs, disregarding the
first 105–4 × 105 MCSs for equilibration, where during each Monte Carlo time step (MCS) an
attempt is made to flip L × M spins of the sample once on average. Results are averages over
four to eight independent runs, depending on the lattice size.

3.2. The wetting phase diagram

In order to gain insight into the behaviour of the model it is useful to first discuss an overview of
the dependence of some relevant observables on both the surface field and the temperature. To
this purpose we have fixed the temperature at T = 0.8, while the magnitude of the surface field
is changed. We show here the magnetization profiles across the film (m(z), see figure 1(a)),
the distribution function of the magnetization of the thin film (P(m), see figure 1(b)) and
the distribution function of the magnetization along the centre of the film (P(m0), where
m0 ≡ m(z = L/2), see figure 1(c)).

It is found that for the smallest value of the field (h1 = 0.4) P(m) exhibits a double-
peaked structure (the peaks are located close to values of the spontaneous magnetization of the
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unconfined system, as shown in figure 1(b)). This result is the typical fingerprint of a localized
interface within the non-wet phase, showing the coexistence of two equivalent states, each
of them with a non-zero average magnetization. In such states the interface is bound to one
of the walls of the film. The distribution P(m0) also exhibits two sharp peaks (figure 1(c)).
Additionally, the shape of the magnetization profile is also consistent with the presence of two
coexisting phases (figure 1(a)) [16].

On the other hand, for h1 = 0.5 one finds that the interface is delocalized so that the
system is in the wet phase. In fact, the distribution P(m) is now a Gaussian centred around
m = 0, while P(m0) also exhibits a single peak at m0 = 0. This scenario is consistent with the
presence of an interface performing excursions across the film and placed, on average, along
the centre of the sample. Consequently, the profile m(z) exhibits a typical sigmoidal shape
which corresponds to this soft mode phase.

Now we describe the different quantities that were analysed in this study. After recording
the distribution function of the magnetization for samples of different sizes and scanning
conveniently both T and h1, it is possible to analyse the behaviour of the system by evaluating
the moments of the distribution. The first moment simply gives the average magnetization m
of the thin film

〈|m|〉 =
∫ 1

0 m P(m) dm
∫ 1

0 P(m) dm
, (26)

while the susceptibility is given by the following relationship:

kBTχ = L M(〈m2〉 − 〈|m|〉2). (27)

In addition, we have calculated the fourth-order cumulant given by

UL = 1 − 〈m4〉
3〈m2〉2

, (28)

which has proven very useful for the location of critical points [61].
As done in many other studies of interfaces in lattice models, the magnetization profiles

across the film were also employed in the present work:

m(z) ≡ 1

M

M∑

x=1

S(x, z). (29)

Additionally, the surface layer magnetization

m1 = 1

2M

( M∑

x=1

S(x, z = 1) −
M∑

x=1

S(x, z = L)

)
(30)

and susceptibility

χ11 ≡ ∂m1

∂h(1)
= M[〈m2

1〉 − 〈m1〉2], (31)

where h(1) is a field that acts only in the surface layer were recorded. These quantities play
an important role in the theory of surface critical phenomena [34].

Finally, from the magnetization profiles we can also obtain the surface excess
magnetization, given by

ms =
L/2∑

z=1

(mb − m(z)) (32)

and noting that for large zm(z) must approach the bulk magnetization in the film, mb.
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Figure 2. Plots of the magnetization |m| versus T as obtained keeping h1 = 0.6 constant and using
lattices of different sizes as shown in the figure. The inset shows a detailed view of the intersection
point of the curves corresponding to samples of different sizes. The double arrow gives an estimate
of the error involved in the determination of the intersection point.
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Figure 3. Plots of the susceptibility versus T as obtained keeping h1 = 0.6 constant and using
lattices of different sizes as shown in the figure. The inset shows the size dependence of the
maximum of the susceptibility kBT χmax. The straight line shows the fit χmax ∼ L3.

Figures 2–4 show the temperature dependence of the total magnetization, the susceptibility
and the cumulant obtained for a fixed surface field h1 = 0.6 and using samples of different
sizes, respectively. On the other hand, figures 5–7 were obtained at constant temperature
(T = 0.8) and scanning the surface field. This set of figures nicely shows that the critical
behaviour can be captured using both scaling fields, either the temperature or the surface field.

It is found that the total magnetization exhibits a sharp drop close to the size dependent
precursor of the critical point, which becomes clearer when increasing the lattice size (figures 2
and 5). It is worth mentioning that all curves have a common intersection point, which follows
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Figure 4. Plots of the fourth order cumulant versus T as obtained keeping h1 = 0.6 constant
and using lattices of different sizes as shown in the figure. The inset shows a detailed view of the
intersection point of the curves corresponding to samples of different sizes. The double arrow gives
an estimate of the error involved in the determination of the intersection point.
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Figure 5. Plots of the magnetization |m| versus h1 as obtained keeping T = 0.8 constant and
using lattices of different sizes as shown in the figure. The inset shows a detailed view of the
intersection point of the curves corresponding to samples of different sizes. The double arrow
gives an additional estimate of the error involved in the determination of the intersection point.

from the fact that the magnetization of the film scales as

m = ms

L
= ξ

1/2
‖
L

m̃s(Lξ
−1/2
‖ , L2ξ−1

‖ , hξ
3/2
‖ ) (33)

cf equation (11) for M ∼ L2. Since at Tw we have ξ‖ ∼ L2, it follows that all moments of
P(m) are simply functions of L2ξ−1

‖ only,

〈|m|k〉 = m̃k(L2ξ−1
‖ ). (34)
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Figure 6. Plots of the susceptibility versus h1 as obtained keeping T = 0.8 constant and using
lattices of different sizes as shown in the figure. The inset shows the size dependence of the
maximum of the susceptibility kBT χmax. The straight line shows the fit χmax ∼ L3.
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Figure 7. Plots of the fourth order cumulant versus h1 as obtained keeping T = 0.8 constant
and using lattices of different sizes as shown in the figure. The inset shows a detailed view of the
intersection point of the curves corresponding to samples of different sizes. The double arrow gives
an estimate of the error involved in the determination of the intersection point.

This follows readily from 〈l〉 ∼ ξ⊥. The intersection point is used as an additional estimation
of the critical point.

The cumulants also exhibit the expected behaviour. In fact, for both T � Tc (figure 4) and
h1 � h1c (figure 7) one has UL → 2/3, while far above the critical point UL tends to vanish.
In spite of the statistical scattering of the data observed above criticality, it is still possible to
identify the intersection point of the curves corresponding to samples of different sizes (see
the insets of figures 4 and 7) and consequently to obtain an additional estimate of the critical
point.
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Figure 8. Plots of the surface layer magnetization m1 and susceptibility χ11 as a function of the
temperature, for h1 = 0.6 and different lattice sizes as indicated.

On the other hand the susceptibility exhibits the typical single-peaked shape. These peaks
are rounded and shifted due to finite-size effects (figures 3 and 6). The insets in these figures
show the dependence of the maximum value of the susceptibility (χmax) on the lattice width
L. In both cases the dependence χmax ∼ L3 holds, as in the case of short-range fields [10].

Besides the estimates for the critical points based on the intersection points of both the
magnetization and the cumulant, it is also possible to obtain an additional value using data of the
susceptibility. In fact, defining the size dependent critical temperature (field) Tc(L) (h1c(L))
as the position of the peak of the susceptibility, an extrapolation to the thermodynamic limit
L → ∞ can be performed by using equation (10).

Furthermore, figure 8 shows the variation of the surface quantities m1 and χ11 with the
temperature, for a surface field h1 = 0.6. While m1 behaves smoothly and hence is not very
suitable to accurately locate the interface transition, the surface susceptibility χ11 shows a
sharp peak which can be used as a reliable estimation of Tc(L).

Figures 9 and 10 summarize the obtained results for the location of the finite size critical
points. The extrapolated critical points unfortunately show only rough agreement with our
previous estimates based on the magnetization and the cumulant, as also shown in the figures.
Probably, the linear dimensions L = 12–48 are not large enough for the asymptotic laws of
equation (10) to hold. Thus, we rely on the estimates based on cumulant intersection in the
following.

Based on the obtained values for the critical points we have drawn the wetting phase
diagram, as shown in figure 11. Let us recall that the extreme cases of the diagram are known
exactly, namely h1(0) = [

∑∞
n=1 n−3]−1 [31], while for T = Tc,b one has h1 = 0. Also for the

sake of comparison we have included the critical curve corresponding to the Ising model with
short-range surface fields that has been solved exactly [40].

3.3. The localization–delocalization transition of the interface.

After drawing the wetting phase diagram we have performed simulations aimed to study the
critical behaviour of the interface. To this purpose it is essential to have an efficient algorithm
capable to accurately locate the interface. Therefore let us first briefly outline the standard
method [56] used in order to evaluate the local position of the interface, �(x). For each column
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Figure 9. Plots of h1c(L) versus (ln L)−2 as obtained for T = 0.5 (top panel) and T = 0.8 (lower
panel). Circles indicate data extracted from the maximum of the susceptibility, while squares
and triangles are data extracted from the distribution P(m0) and the surface susceptibility χ11,
respectively. The fit according to equation (10) (see the lines) allows us to extrapolate to the
thermodynamic limit and to obtain h1w(T ). Independent estimates of the critical fields obtained
from both the magnetization and the cumulant are also shown for the sake of comparison (see the
arrows).
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Figure 10. Plots of Tc(L) versus (ln L)−2 as obtained for h1 = 0.25 (top panel) and h1 = 0.6
(lower panel). Circles indicate data extracted from the maximum of the susceptibility, while
squares and triangles are data extracted from the distribution P(m0) and the surface susceptibility
χ11, respectively. The fit according to equation (10) (see the lines) allows us to extrapolate to
the thermodynamic limit and to obtain Tw(h1). Independent estimates of the critical temperatures
obtained from both the magnetization and the cumulant are also shown for the sake of comparison
(see the arrows).
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Figure 11. Wetting phase diagram for the Ising model with surface fields of long range (LR) of
the form h(z) ∼ h1/z3. Circles are Monte Carlo results obtained by means of extrapolations to the
thermodynamic limit. The dashed line has been drawn to guide the eyes taking into account that
the extreme points for T = 0 and Tc,b are known exactly. The exact solution [40] for the critical
curve corresponding to short-range (SR) fields, given by equation (3), is also shown for the sake of
comparison (full line).

i one has to evaluate the summation given by

v(�) =
L∑

j=1

[S(i, j) − p( j − �)]2, (35)

where p(z) is a step function such as p = 1 for z < 0 and p = −1 for z > 0. The value
of � that minimizes the summation is then defined as the position of the interface at the i th
column. Using this procedure, the function �(x), that assumes integer values between zero
and L for the range 1 � x � M , is obtained. Figure 12 shows a set of snapshots of typical
spin configurations together with the corresponding interface configuration, as obtained by
use of this algorithm. These data correspond to a fixed surface field h1 = 0.6 and several
temperatures, for a lattice of thickness L = 48. One can observe that, for low T (T = 0.61,
T = 0.62 < Tc(L) ≈ 0.625), the interface remains bound to one wall as expected for the
non-wet phase. Increasing T (T = 0.625, 0.6275), the detachment of the interface from the
wall and the subsequent excursions can be observed. Finally, for T > Tc(L) the interface is
found running along the centre of the film as expected for the wet phase.

After using the method described above for the location of the interface, it is possible to
compute the distribution function P(�), that gives the probability of finding the interface at
the position �(x) along the strip.

Figure 13 shows plots of P(�) and m(z) obtained using a lattice of size L = 48, keeping
h1 = 0.6 constant and changing the temperature. It is found that for T < Tc(L) the interface
becomes localized close to the walls, where the distribution exhibits two symmetric peaks.
This behaviour is in qualitative agreement with the observed snapshots and corresponds to
the non-wet regime. Note that in the case of a first-order interface localization–delocalization
transition (which would also be compatible with the finite size analysis presented above) we
would expect to see three distinct peaks of P(�) in the transition region, separated by deep
minima from each other. This is not the case here. On approaching the critical temperature, it
is expected that the mean position of the interface 〈�〉 should diverge exponentially according
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Figure 12. Snapshots of the Ising film for L = 48, M = 576, h1 = 0.6 and different temperatures
as indicated. Spins Si = +1 are shown in black, and spins Si = −1 are not shown. The configuration
of the interface is indicated by a thick line.
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Figure 13. Plots of the probability distribution P(�) for the position of the interface (left panel) and
the magnetization profiles m(z) across the film (right panel), obtained for h1 = 0.6 and changing
the temperature around the critical one given by Tc(L) = 0.625. It should be noticed that due to
the fact that hL ≡ −h1 P(�) is symmetric and m(z) is antisymmetric with respect to the centre of
the film, z = L/2.

to 〈�〉 ∼ exp(h1c − h1)
−1/2 (see equation (6) and figure 14). Of course, for a finite strip of

thickness L, such a divergence is actually limited by L/2.
Just at the wetting critical point, P(�) should be a flat line with an average height of 1/L,

so that the interface is truly delocalized and can be found, with the same probability, at any
position along the strip. However, this behaviour is hard to observe in our simulations since
the transition to the wet phase is quite abrupt. By increasing the temperature one reaches
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Figure 14. Plots of the mean position of the interface (〈�〉) and the surface excess magnetization
ms versus the temperature, as obtained for h1 = 0.6 and using a lattice of size L = 48. The lines
are fits of the data to an exponential dependence given by equation (6).
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Figure 15. Plots of the magnetization profiles m(z) across the film (left panel) and the probability
distribution P(�) for the position of the interface (right panel), for different lattice sizes as indicated.
The temperature is T = 0.8 and the surface field h1 = 0.45.

the wet phase for T > Tc and now the competing effect of the surface fields causes P(�) to
develop a single peak at the centre of the strip z = L/2. The properties of the delocalized
interface within this wet regime are analysed in section 3.5. In a similar way, upon raising
the temperature at fixed field the magnetization profiles show the behaviour already observed
for the interface transition with short-range boundary fields [9–11]. They remain nearly flat in
the middle of the film for T < Tc, become almost linear around Tc, and then adopt a typical
sigmoidal shape in the wet phase (T > Tc). Using these profiles and equation (32) we have
also calculated the surface excess magnetization ms (see figure 14), which plays the same role
as the mean position of the interface 〈�〉. The observed exponential divergence confirms this
picture.

The behaviour of the magnetization profiles close to the critical point provides evidence
of the subtle role played by the finite size effects. In fact, figure 15(a) shows that the profiles
measured at T = 0.8 and h1 = 0.45 are almost linear with systematic deviations. The best
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Figure 16. Plots of the Fourier spectra 〈|u(q)|2〉 of the position of the interface �(x), for h1 = 0.6
and different temperatures as indicated. The inset shows the linear fitting devoted to estimating
the correlation length ξ‖ and the interface stiffness β	. The integer index n runs from 1 to M and
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linear profile corresponds to L = 32 and for this lattice size it can also be observed that
the distribution function of the interface is almost flat. These results are in agreement with
the fact that h1 = 0.45 is the effective critical field for L = 32, as shown already in the
extrapolations of figure 9. For h1 = 0.45 the lattice of size L = 48 is above its critical point
(h1 ≈ 0.44) so that this lattice is slightly within the wet phase. Therefore, the profile tends
to deviate towards a sigmoidal shape (figure 15(a)) while P(�) exhibits a smooth peak around
the centre of the sample (figure 15(b)). For the smaller lattices with L = 16 and 24 the value
h1 = 0.45 effectively lies within the non-wet phase and then the distribution of the interface
has a minimum at the centre of the film, while the magnetization profiles look slightly flattened
in the middle.

It is also of interest to analyse the behaviour of the correlation lengths close to the transition,
as done in previous simulation studies of the case of short-range surface fields [33]. To
this purpose we have also evaluated the Fourier spectrum of the interface function �(x), see
figure 16. After fitting the data to the theoretical expectation (cf equation (18)), as shown in
the inset of figure 16, we are able to estimate the dependence of ξ‖ on both T and L.

The dependence of the length scales ξ‖ and ξ⊥ on the film thickness L is described in
figure 17. Very close to the wetting critical point (T = 0.8, h1 = 0.45) the relationship
ξ‖ ∼ L2 holds in agreement with theoretical predictions (see equation (20)). Furthermore,
the evaluation of the fluctuations of the interface position allows us to estimate the interfacial
width s. Figure 17 then also shows a linear dependence of the type ξ2

⊥ ∼ s2 ∼ L2, as expected
from equation (25).

On the other hand, figure 18 presents the dependence of both correlation lengths on
the temperature, for a sample of size L = 48. Figure 18(a) shows that w ∼ ξ⊥ diverges
exponentially when approaching the critical wetting point, according to equation (6). The
best fit of the data gives ξ−

0⊥ ≈ 0.3 and b−
⊥ ≈ 0.25 for h1 < h1c, while for h1 > h1c one has

ξ+
0⊥ ≈ 5.4 and b+

⊥ ≈ 0.1. Furthermore, as shown in figure 18(b), ξ‖ also diverges exponentially
at criticality. In this case we have obtained ξ−

0‖ ≈ 1.5, b−
‖ ≈ 0.5 (h1 < h1c), and ξ+

0‖ ≈ 59.0,
b+

‖ ≈ 0.2 (h1 > h1c). Results obtained measuring the spin–spin correlation function are also in
qualitative agreement with those estimated from the correlations along the interface (figure 18).
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Figure 17. Plots of the correlation length and the width of the interface, as a function of the film
thickness L . The temperature is T = 0.8 and the surface field is h1 = 0.45.
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Figure 18. Plots of the width w (left panel) and the correlation length ξ‖ (right panel) of the interface,
as a function of the temperature at fixed field h1 = 0.6. The lattice size is L = 48. The width
w is obtained from the correlation function G(�(x)) (circles) and from the magnetization profiles
(squares). The length ξ‖ is obtained from G(�(x)) (circles) and from the spin–spin correlation
function G(x, z = L/2) (triangles). Dashed lines correspond to fits according to equation (6).

By using the data shown in figure 18 we are able to check the relationship between the
length scales ξ‖ and ξ⊥. In fact, plots of ξ‖ versus w2 (ξ2

⊥) for values of T close to the critical
one are found to be linear above and below the critical point (see figure 19). This confirms
that, despite the fact that both exponents ν‖ and ν⊥ are infinite, the relationship ν‖ = 2ν⊥ still
holds for long-range surface fields as used in the present work.

3.4. Influence of the bulk magnetic field

In order to further clarify the critical behaviour of the interface we have also addressed the
case of complete wetting, i.e. we considered the dependence on the bulk magnetic field h < 0
at a fixed temperature T and fixed surface field h1 � h1c(T ). Figure 20 shows the results for
the choice T = 0.8 and h1 = 0.435, which corresponds to one of the extrapolated critical
points. From the probability distribution P(�) and the magnetization profiles m(z) we extract
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Figure 19. Plots of the correlation length versus the width of the interface. Data are taken from
figure 18. The bottom (upper) x-scale corresponds to T < Tw (T > Tw).
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Figure 20. Plots of the probability distribution P(�) for the position of the interface (left panel)
and the magnetization profiles m(z) across the film (right panel), for different values of the bulk
magnetic field h as indicated. The temperature T = 0.8 and the surface field h1 = h1c = 0.435
are constant. The insets show the mean position of the interface 〈�〉 and the excess magnetization
ms respectively. The dashed lines correspond to a power law with exponent βco = 1/3.

the (equivalent) lengths 〈�〉 and ms, respectively. One can observe the power law divergence
of both quantities, with the predicted theoretical value βco = 1/3 (see equations (7) and (12)).

Additionally, after evaluating the Fourier spectra of the interface and using equation (18),
we have determined the dependence of both the stiffness β	 and ξ‖ on the bulk field, as shown
in figure 21. The observed increase of the interfacial stiffness with |h| can be assigned to the
constraining effect of the field, that shifts the mean position of the interface towards the wall.
In this way the wandering of the interface becomes more restricted. The predicted relationship
ξ‖ ∼ |h|−νco

‖ with νco
‖ = 2/3 (see equation (7)) is observed for |h| > 10−4, while for weaker

fields ξ‖ tends to the equilibrium value already determined for h ≡ 0; see e.g. figure 18.
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Figure 21. Plots of the effective stiffness β	 (left panel) and the parallel correlation length ξ‖ (right
panel), as a function of the bulk magnetic field h. The surface field h1 = 0.6 and the temperature
T = Tc(h1) = 0.625 are constant. The arrow in the left panel indicates the exact value of β	 in
the asymptotic limit |h| = 0. The dashed line in the right panel corresponds to a power law with
exponent νco‖ = 2/3.

3.5. Study of the delocalized interface.

Within the wet phase, namely for Tw(h1) < T < Tc,b, interfaces become delocalized and some
of their relevant properties can be studied by means of measurements of the magnetization
profiles and the distribution function of the interface position.

Figure 22(a) shows plots of the magnetization profiles (m(u = z − L/2)) that have been
used to evaluate the effective width of the interface (w) by fitting the curves to an error function,

m(z) ≡ 1

M

M∑

x=1

S(x, z) = −m0 erf

(√
π(z − L/2)

2w

)
, (36)

where the constant m0 is of the order of the bulk magnetization.
On the other hand, the effective profile can be obtained from the convolution of the intrinsic

profile and the distribution of the local position of the interface (P(u), see figure 22(b)). The
intrinsic profile is given by

m(i)(z) = −m0 erf

(√
π(z − L/2)

2w0

)
, (37)

where the intrinsic width w0 accounts for the internal structure of the interface. Also the
distribution P(u) describing the fluctuations in the local position of the interface is expected
to be a Gaussian according to the theory of capillary waves, so one has

P(u) = 1√
2πs2

exp

(
− u2

2s2

)
, (38)

where u(x) ≡ � − L/2, and the width of the capillary waves s2 is evaluated by using
equation (22). Therefore, performing the convolution, the effective profile becomes

m(a)(z) =
∫ ∞

−∞
du m(i)(z − u)P(u). (39)

Inserting equations (37) and (38) into equation (39) we obtain

w2 = w2
0 +

π

2
s2. (40)
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Figure 22. (a) Plots of the magnetization profiles m(u) as a function of u = z− L/2. Data obtained
by taking T = 0.50, h1 = 1.0 and using lattices of different sizes, as listed in the figure. Full
lines correspond to the fits of the data to the error function (see equation (36)). (b) Plots of the
distribution P(u) as a function of u = � − L/2, as obtained for the same set of parameters as in
(a). The full lines are obtained after fitting the data to a Gaussian function (see equation (38)).
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Figure 23. (a) Plots of the effective width (w) and the width of the fluctuations (s) versus the film
thickness L . Data are taken from the fits shown in figures 22(a) and (b), respectively. For the sake
of comparison, the full (dashed) line shows the dependence of w (s) which is obtained simulating
the confined Ising strip with short-range surface fields. (b) Plot of w2 versus s2. The dashed line
shows the function w2 = w2

0 + π/2s2, where w0 = 0.706 corresponds to the intrinsic width of an
Ising interface [41] (see equation (40)).

Equation (40) provides a relationship between the quadratic intrinsic width and two quantities
that can be measured by means of numerical simulations: the width of the capillary waves and
the width of the magnetization profiles.

Figure 23(a) shows a plot of the effective width, as obtained by fitting the magnetization
profiles shown in figure 22(a) by means of equation (36), versus the lattice size L. Also the
width of the capillary waves as obtained after fitting the curves shown in figure 22(b) with the
aid of equation (38) is shown in figure 23(a).

The plots in figure 23(a) confirm the linear dependence of w and s on the lattice width
L, as predicted by both the theory of capillary waves (s ∼ L, see equation (20)) and the
transfer matrix method applied to films with short-range fields (equation (21)). For the sake of
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comparison, figure 23(a) also includes our results for the case of short-range fields. It becomes
evident that the long-range nature of the fields tends to stabilize the fluctuations of the position
of the interface by restricting the magnitude of its width, as expected.

Next, by using the values of w and s already measured we are able to test the validity of
equation (40). This is shown in figure 23(b). It follows that the linear relationship, with slope
π/2 and constant w0 = 0.706 [41], holds quite well.

3.6. The correlation length and the surface tension

For the semi-infinite Ising strip, the correlation length ξ‖ describes the asymptotic decay of the
correlation function along the centre of the film,

G(x ′, z = L/2) ≡ 〈S(x, z)S(x + x ′, z)〉 ∼ exp(−x ′/ξ‖). (41)

In the simulations one actually calculates the correlation function along the centre of the film,
while fitting equation (41) with an exponential decay the correlation length ξ‖ can be obtained.

On the other hand, the theory of capillary waves provides a useful relationship between the
Fourier spectrum of local fluctuations (u(q)) the correlation length ξ‖ and the effective surface
stiffness β	, given by equation (18). So, one has two methods to evaluate the correlation
length and the results may provide a stringent test of the theory.

Let us now derive the relationship between the correlation length ξ‖ and the width L of
the sample in view of the interplay between short- and long-range effects.

The energy of the interface influenced by a long-range (LR) surface field can be accounted
for by an effective potential VLR(�), given by

VLR(�) =
∫ L

0
dz h(z)m(z) (42)

where h(z) is given by equation (2). Also, the magnetization profile is roughly approximated
by a step function m(z) = �(� − z) − �(z − �), such that

m(z) =






+1 if z < �

0 if z = �

−1 if z > �.

Now solving equation (42), performing a double derivative with respect to � and evaluating it
at the centre of the film, one has

|V ′′
LR(u = 0)| = 12h1 L−4, (43)

that combined with equation (19) from the capillary wave theory gives the following
relationship for the correlation length:

ξ‖LR =
√

	L4

12h1
, (44)

that increases with the second power of the film width L, as in the case of short-range fields.
In order to compare the prediction of equation (44) with the simulation results we have taken
	 = 2.2 for T = 0.5 [19].

On the other hand, short-range (SR) surface fields also influence the magnetization profiles
close to the walls, and such a disturbance decays exponentially towards the centre of the film.
In this way, an effective wall–interface interaction is also present for SR fields. According to
transfer matrix calculations [19, 58], this interaction leads to the following dependence of ξ‖SR
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Figure 24. Plots of the correlation length ξ‖ versus L2. Results obtained from the spectra of the
fluctuations of the interface according to equation (18) (squares), and from the spin correlation
function along the centre of the film (circles). The dotted (dashed) line corresponds to the
contribution of SR (LR) fields as follows from equation (45) ((44)). The full line accounts for
both SR and LR contributions, according to equation (46).

on L (see also equation (21)):

ξ‖SR = 2β	

3π2
L2. (45)

Now we assume that the influence of both short- and long-range interactions has to be
considered to give the total contribution to the correlation length. Therefore, according to
equation (19) the summation has to be performed as follows:

ξ−2
‖ ≈ ξ−2

‖SR + ξ−2
‖LR. (46)

Figure 24 shows a comparison between the theoretical calculations and the simulation results
obtained by using two different methods: the fit of the correlation function G(x, z = L/2)

according to equation (41) and the evaluation of the Fourier spectra (see equation (18)). As
follows from figure 24, simulation results corresponding to both evaluation methods are in
excellent agreement for small values of L, but an observable systematic discrepancy emerges
when L is increased. It also follows that both long (LR) and short-range (SR) contributions
overestimate the values for the correlation length, while the interplay between SR and LR
effects, as evaluated according to equation (46), provides the best description of the numerical
data.

On the other hand, with the aid of the Fourier spectra of the fluctuations of the interface
(equation (18)) it is possible to evaluate the dependence of the effective surface stiffness β	

on the film thickness L, as shown in figure 25. Since the correlation length ξ‖ increases when
increasing the thickness of the film, the stiffness decreases approaching the value of the free
interface given by β	 = 1.9394 [19]. This behaviour has already been observed in the case of
short-range surface fields, which is also shown in figure 25 for the sake of comparison. Also
the dependence β	 ∼ L−2, as predicted theoretically [16], is observed.

4. Conclusions

In this paper we have presented detailed Monte Carlo simulations of Ising films in two
dimensions, where competing surface fields which decay as a power law with the distance to the
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Figure 25. Plot of the effective stiffness β	 versus the film thickness L , as obtained from the
spectra of the fluctuations of the interface. The dashed line is a fit to the expected theoretical decay
proportional to L−2. Results corresponding to short-ranged fields are also shown for the sake of
comparison. Notice that in both cases the asymptotic value for L → ∞ is given by β	 = 1.9394,
which corresponds to the free interface.

wall are applied. The specific system studied here, with surface fields of the type h(z) ∼ h1/z3,
is interesting for several reasons. First, it displays a localization–delocalization transition of
the interface which belongs to an unusual universality class. Theoretical calculations based
on effective Hamiltonian models predicts that upon varying the temperature (or the equivalent
scaling field h1) across the transition the relevant length scales diverge exponentially instead
of in the usual power law fashion [62, 64]. This behaviour could be clearly observed in our
simulations, where the divergence of both parallel and perpendicular correlation lengths was
determined by means of several defined quantities.

Besides this, the location of the critical line for this transition, in the (T, h1) plane is
not known exactly to date. In this sense this paper makes a contribution, by presenting a
comprehensive numerical study of the finite size effects for this transition. By using the
cumulant intersection method we extract estimates for the critical wetting points, and the phase
diagram is then drawn with the addition of two other points which are previously known. After
the write-up of our paper was essentially completed, we learned about an independent study
(A Drzewiński and K Szola, preprint entitled ‘Corrections to the Kelvin equation for long-
range boundary fields’) obtaining this wetting phase diagram by means of numerical density
matrix renormalization group techniques. Using systems L × ∞ with L up to L = 690, the
approach to the thermodynamic limit could be studied reliably in this work. Gratifyingly, the
resulting wetting phase diagram is in very good agreement with our estimation in figure 11.
Interestingly, this work does not obtain any evidence of a (ln L)−2 law for finite-size shifts,
raising doubts about the corresponding suggestion of [31] (equation (10) of the present paper).

The observed dependence of the correlation lengths on the film thickness is well described
by current theories [55].

Once the critical curve had been obtained, we focused on the influence of a bulk (uniform)
magnetic field on the critical behaviour of the films. This corresponds to the case of complete
wetting, and we were able to observe the predicted power law divergence of the correlation
length.
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Then we addressed the study of the properties of the delocalized interface. The effective
width as measured by the magnetization profiles and the capillary wave contribution were
related through a convolution approximation,which reproduces very well the data if an intrinsic
width corresponding to Ising interfaces [41] is assumed. Furthermore, a small decrease of the
interfacial width was observed, as compared to the case of short-range wall fields. This effect
has also been observed in computer simulation studies of polymer models [59].

We believe these results are of the interest due to the lack of a exact solution for the model
under study.

Acknowledgments

The authors would like to thank A Maciolek for useful discussions. This work is supported
financially by CONICET, UNLP and ANPCyT (Argentina). EVA acknowledges the Alexander
von Humboldt Foundation (Germany) for a fellowship. ADV acknowledges DAAD (Germany)
for a scholarship.

References

[1] de Gennes P G 1985 Rev. Mod. Phys. 57 827
[2] Sullivan D E and Telo da Gama M M 1986 Fluid and Interfacial Phenomena ed ed C A Croxton

(New York: Wiley)
[3] Dietrich S 1988 Phase Transitions and Critical Phenomena vol 12, ed C Domb and J L Lebowitz

(London: Academic)
[4] Schick M 1990 Liquids at Interfaces ed J Charvolin et al (Holland: Elsevier)
[5] Forgacs G, Lipowsky R and Nieuwenhuizen Th M 1991 Phase Transitions and Critical Phenomena vol 14,

ed C Domb and J L Lebowitz (London: Academic)
[6] Parry A O 1996 J. Phys.: Condens. Matter 8 10761
[7] Fisher M E and Nakanishi H 1981 J. Chem. Phys. 75 5857
[8] Nakanishi H and Fisher M E 1983 J. Chem. Phys. 78 3279
[9] Albano E V, Binder K, Heermann D and Paul W 1989 Surf. Sci. 223 151

[10] Albano E V, Binder K, Heermann D and Paul W 1989 Z. Phys. B 77 445
[11] Albano E V, Binder K, Heermann D and Paul W 1990 J. Stat. Phys. 61 161
[12] Parry A O and Evans R 1990 Phys. Rev. Lett. 64 439
[13] Swift M R, Owczarek A L and Indekeu J O 1991 Europhys. Lett. 14 465
[14] Gradmann U 1991 J. Magn. Magn. Mater. 100 481
[15] Binder K and Landau D P 1992 J. Chem. Phys. 96 1444
[16] Parry A O and Evans R 1992 Physica A 181 250
[17] Binder K, Landau D P and Ferrenberg A M 1995 Phys. Rev. Lett. 74 298

Binder K, Landau D P and Ferrenberg A M 1995 Phys. Rev. E 51 2823
[18] Binder K, Landau D P and Ferrenberg A M 1995 Phys. Rev. E 53 5023
[19] Maciolek A and Stecki J 1996 Phys. Rev. B 54 1128
[20] Maciolek A 1996 J. Phys. A: Math. Gen. 29 3837
[21] Werner A, Schmid F, Müller M and Binder K 1997 J. Chem. Phys. 107 8175
[22] Karevski D and Henkel M 1997 Phys. Rev. B 55 6429
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